399 research outputs found

    Oil palm expansion increases the vectorial capacity of dengue vectors in Malaysian Borneo

    Get PDF
    Changes in land-use and the associated shifts in environmental conditions can have large effects on the transmission and emergence of mosquito-borne disease. Mosquito-borne disease are particularly sensitive to these changes because mosquito growth, reproduction, survival and susceptibility to infection are all thermally sensitive traits, and land use change dramatically alters local microclimate. Predicting disease transmission under environmental change is increasingly critical for targeting mosquito-borne disease control and for identifying hotspots of disease emergence. Mechanistic models offer a powerful tool for improving these predictions. However, these approaches are limited by the quality and scale of temperature data and the thermal response curves that underlie predictions. Here, we used fine-scale temperature monitoring and a combination of empirical, laboratory and temperature-dependent estimates to estimate the vectorial capacity of Aedes albopictus mosquitoes across a tropical forest-oil palm plantation conversion gradient in Malaysian Borneo. We found that fine-scale differences in temperature between logged forest and oil palm plantation sites were not sufficient to produce differences in temperature-dependent demographic trait estimates using published thermal performance curves. However, when measured under field conditions a key parameter, adult abundance, differed significantly between land-use types, resulting in estimates of vectorial capacity that were 1.5 times higher in plantations than in forests. The prediction that oil palm plantations would support mosquito populations with higher vectorial capacity was robust to uncertainties in our adult survival estimates. These results provide a mechanistic basis for understanding the effects of forest conversion to agriculture on mosquito-borne disease risk, and a framework for interpreting emergent relationships between land-use and disease transmission. As the burden of Ae. albopictus-vectored diseases, such as dengue virus, increases globally and rising demand for palm oil products drives continued expansion of plantations, these findings have important implications for conservation, land management and public health policy at the global scale

    Mapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches

    Get PDF
    Southeast Asia is the epicentre of world palm oil production. Plantations in Malaysia have increased 150% in area within the last decade, mostly at the expense of tropical forests. Maps of the aboveground carbon density (ACD) of vegetation generated by remote sensing technologies, such as airborne LiDAR, are vital for quantifying the effects of land use change for greenhouse gas emissions, and many papers have developed methods for mapping forests. However, nobody has yet mapped oil palm ACD from LiDAR. The development of carbon prediction models would open doors to remote monitoring of plantations as part of efforts to make the industry more environmentally sustainable. This paper compares the performance of tree-centric and area-based approaches to mapping ACD in oil palm plantations. We find that an area-based approach gave more accurate estimates of carbon density than tree-centric methods and that the most accurate estimation model includes LiDAR measurements of top-of-canopy height and canopy cover. We show that tree crown segmentation is sensitive to crown density, resulting in less accurate tree density and ACD predictions, but argue that tree-centric approach can nevertheless be useful for monitoring purposes, providing a method to detect, extract and count oil palm trees automatically from images.Airborne laser scanning data were collected by NERC ARF as part of NERC’s Human-modified Tropical Forests Programme (Biodiversity And Land-use Impacts on tropical ecosystem function (BALI) project; grant number: NE/K016377/1). We are grateful to the flight team and the data analysts at NERC’s data analysis node. Marion Pfeifer kindly provided us access to Pléiades imagery. We thank the Sime Darby Foundation, the Sabah Foundation, Benta Wawasan and the Sabah Forestry Department for their support of the SAFE Project. We thank the Royal Society South East Asia Rainforest Research Partnership for logistical support in the field

    Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests

    Get PDF
    Termites are vital members of old-growth tropical forests, being perhaps the main decomposers of dead plant material at all stages of humification (decay). Termite abundance and diversity drop in selectively logged forest, and it has been hypothesised that this drop is due to a low tolerance to changing micro-climatic conditions. Specifically, the thermal adaptation hypothesis suggests that tropical species are operating at, or close to, their thermal optimum, and therefore, small temperature increases can have drastic effects on abundance, however, other climatic variables such as humidity might also cause termite abundance to drop. We tested termite tolerance to these two climatic variables (temperature and humidity). We found that termites had a higher CTmax than expected, and that three traits, feeding group, body sclerotisation, and nesting type, were significantly correlated with CTmax. We found that termite desiccation tolerance was low, however, and that all termite genera lost significantly more water in a desiccated environment than in a control. Body sclerotisation, the only trait that was tested, was surprisingly not significantly correlated with desiccation tolerance. Our results suggest that desiccation, rather than ambient temperature, may be the determining factor in dictating termite distributions in modified forests. Should climate change lead to reduced humidity within tropical rainforests, termite abundances and the rates of the functions they perform could be severely reduced

    Mapping the structure of Borneo's tropical forests across a degradation gradient

    Get PDF
    South East Asia has the highest rate of lowland forest loss of any tropical region, with logging and deforestation for conversion to plantation agriculture being flagged as the most urgent threats. Detecting and mapping logging impacts on forest structure is a primary conservation concern, as these impacts feed through to changes in biodiversity and ecosystem functions. Here, we test whether high-spatial resolution satellite remote sensing can be used to map the responses of aboveground live tree biomass (AGB), canopy leaf area index (LAI) and fractional vegetation cover (FCover) to selective logging and deforestation in Malaysian Borneo. We measured these attributes in permanent vegetation plots in rainforest and oil palm plantations across the degradation landscape of the Stability of Altered Forest Ecosystems project. We found significant mathematical relationships between field-measured structure and satellite-derived spectral and texture information, explaining up to 62% of variation in biophysical structure across forest and oil palm plots. These relationships held at different aggregation levels from plots to forest disturbance types and oil palms allowing us to map aboveground biomass and canopy structure across the degradation landscape. The maps reveal considerable spatial variation in the impacts of previous logging, a pattern that was less clear when considering field data alone. Up-scaled maps revealed a pronounced decline in aboveground live tree biomass with increasing disturbance, impacts which are also clearly visible in the field data even a decade after logging. Field data demonstrate a rapid recovery in forest canopy structure with the canopy recovering to pre-disturbance levels a decade after logging. Yet, up-scaled maps show that both LAI and FCover are still reduced in logged compared to primary forest stands and markedly lower in oil palm stands. While uncertainties remain, these maps can now be utilised to identify conservation win–wins, especially when combining them with ongoing biodiversity surveys and measurements of carbon sequestration, hydrological cycles and microclimate

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    Hydrological dynamics of tropical streams on a gradient of land-use disturbance and recovery: A multi-catchment experiment

    Get PDF
    Although erosional impacts of rainforest logging are well established, changes in hydrological dynamics have been less explored especially in the post-logging recovery phase following repeat-logging cycles and mature phase of oil palm plantation cycles. This study addresses this gap by comparing hydrological characteristics of five catchments in a steep land area of Sabah, Malaysian Borneo on a gradient of disturbance and recovery – twice-logged forest, 22 years recovery (LF2); multiple-logged forest, 8 years recovery (LF3); mature oil palm, 20 years old (OP); and two primary forests (PF and VJR) as controls. Each catchment was instrumented with water depth (converted to discharge), conductivity, temperature, and turbidity sensors, and a raingauge connected to a solar-powered datalogger recording data at 5-minute intervals from November 2011 to August 2013. Data were analysed via the flow-duration curve (FDC) supplemented by the runoff coefficient (RR) and coefficient of variation in discharge (QVAR) for aggregated characteristics, as well as via a combination of the Dunn's test and multiple-regression at the storm event scale for focused hydrological dynamics. Results show that OP is characterised by a relatively low RR (0.357) but with high responsiveness during storm events and very low baseflow (38.4% of total discharge). Discharge in the LF3 (RR = 0.796) is always the highest while having an intermediate level of responsiveness. LF2 with longer-term recovery shown a reduction in terms of discharge (RR = 0.640). Being the benchmark, the undisturbed forest (PF) has the most buffered storm response with the highest baseflow (67.9% of total discharge). Stormflow and baseflow are anomalously high and low respectively in the near-primary VJR catchment, but this probably reflects the shallow soils and short-stature rainforest associated with its igneous and metamorphic lithology. From a management aspect, although hydrological recovery is more advanced in the 22 years than in the 8-years post-logging catchment, full recovery is yet to be achieved and might be hastened by enrichment planting of the degraded forest. The low baseflow and flashy nature of the mature oil palm have major implications for downstream water supply in ENSO periods and flooding in La Nina periods. Steep lands in the humid tropics are best avoided from any form of landscape disturbance

    The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    Get PDF
    Freshwaters provide valuable habitat and important ecosystem services, but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied sixteen streams in Sabah, Borneo, including old growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment, and compared it with stream environmental conditions including water quality, structural complexity and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems, but logging practices and catchment-scale forest management also need to be considered.During this work SHL was funded by a Natural Environment Research Council (NERC) studentship (number 1122589), Proforest, the Varley Gradwell Travelling Fellowship, Tim Whitmore Fund, Panton Trust and the Cambridge University Commonwealth Fund. MP and RME were supported by European Research Council Project number 281986. HB was funded by the S.T. Lee Fund
    corecore